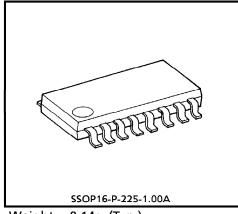
TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA8416F

LOW VOLTAGE USE 3 PHASE HALL MOTOR DRIVER

TA8416F is low voltage use 3 phase Hall Motor Driver IC with stand-by function designed especially for portable VCR, Head Phone Stereo and other battery operated electrical equipment motor drive applications.

FEATURES


- 3 phase bipolar/unipolar Hall Motor Driver
- Low voltage use
- Voltage drive type
- Stand-by function for longer battery life
- MFP16 Flat package sealed
- 2 Hall Sensor drive available
- Operating supply voltage : $V_{CC} = 1.8 \sim 7.2 \text{V}$

 $V_S = 0.2 \sim 7.2 V$

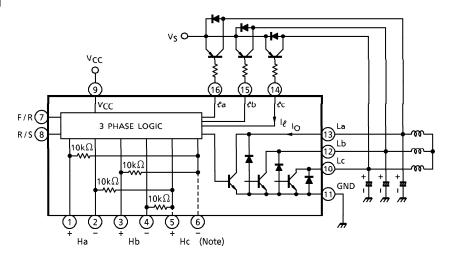
• Output current : $I_{O(MAX.)} = 0.7A$ (AVE.)

= 1.3A (PEAK)

Built-in thermal shut down circuit

Weight: 0.14g (Typ.)

961001EBA


The products described in this document are subject to foreign exchange and foreign trade control laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

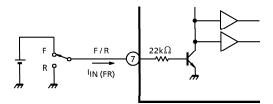
[●] TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

BLOCK DIAGRAM

(Note) Refer to PIN FUNCTION 3.

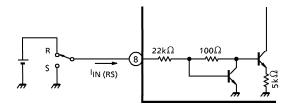
PIN FUNCTION

PIN No.	SYMBOL	FUNCTIONAL DESCRIPTION	REMARK			
1	Ha+	a-phase Hall Amp. positive input terminal.	_			
2	Ha-	a-phase Hall Amp. negative input terminal.	_			
3	Hb+	b-phase Hall Amp. positive input terminal.	_			
4	Hb-	b-phase Hall Amp. negative input terminal.	_			
5	Hc+	c-phase Hall Amp. positive input terminal.	_			
6	Hc-	c-phase Hall Amp. negative input terminal.	_			
7	F/R	Rotation direction control input terminal.	H : Forward, L : Rererse			
8	R/S	Start/Stand by control Input terminal.	H : Start, L : Stand-by			
9	Vcc	Power supply input terminal.	$V_{CC (opr.)} = 1.8 \sim 7.2 V$			
10	Lc	c-phase drive output terminal.	_			
11	GND	GND terminal.	_			
12	Lb	b-phase drive output terminal.	_			
13	La	a-phase drive output terminal.	_			
14	ℓс	c-phase Pre-drive stage output terminal.	Connect to external PNP Transistor's Base			
15	ℓb	b-phase Pre-drive stage output terminal.	Connect to external PNP Transistor's Base			
16	lа	a-phase Pre-drive stage output terminal.	Connect to external PNP Transistor's Base			


TERMINAL DESCRIPTION

1. Rotation direction control input (FR input, pin⑦)

Motor rotation direction is controlled by this terminal. More than 1V of control voltage becomes motor forward rotation and less than 0.4V of this voltage becomes motor reverse rotation. $22k\Omega$ of input resistance is equipped in series of this terminal. Therefore input current is calculated by following equation.

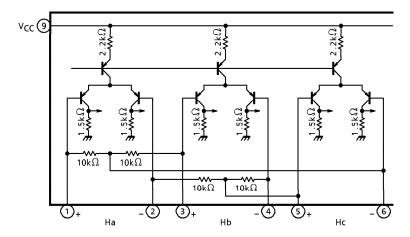

$$I_{\text{IN (FR)}} = \frac{V \odot - V_{\text{BE}}}{22 \times 10^3 \Omega} = \frac{3V - 0.7V}{22 \times 10^3 \Omega} \stackrel{=}{=} 100 \mu \text{A}$$
 $(V \odot = 3V)$

And the open mode of the terminal, there's no input current flow.

2. Start/stand-by control input (RS input, pin®)

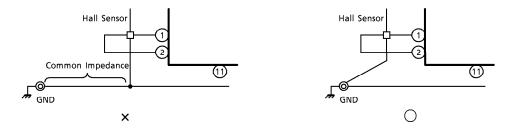
Start (Run) and stand-by modes are controlled by this terminal. Operating voltage are more than 1V (Start or Run) and less than 0.5V (Stand-by). Supply current becomes less than 100μ A in Stand-by mode.

3. Hall sensor inputs (Ha+, -, Hb+, -, Hc+, -, pin①, ②, ③, ④, ⑤, ⑥)

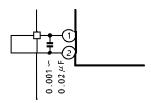

Hall Sensor Inputs for position sensing.

2 Hall Sensor Drive is also available by 4 pcs of $10k\Omega$ matrix resistors connect to Ha^{+, -} and Hb^{+, -} terminals.

But, in case of lower speed application, poor precision sensor positioning and good torque ripple and W/F characteristics required.

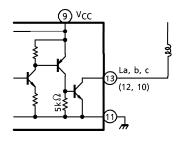

We recommend to use 3 Hall Sensors for stable operations. Input sensitivity is 20mV_{p-p} (Typ), but actual value is $2 \sim 3 \text{mV}$.

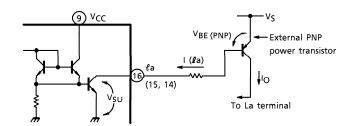
We recommend to input more than $20 \text{mV}_{\text{p-p}}$ to get good W/F characteristics.



Wide DC operating range of $0 \sim V_{CC} - 1.2V$ is accomplished by PNP input circuit and also built in hysteresis restricts mis-function caused by external noise.

But care should be taken not to have a common impedance between Hall Sensor GND lines and the power GND line for stable operations.


To decrease noise problems, we recommend to connect noise suppression capacitance $(0.001\sim0.02\mu\text{F})$ between each Hall Input Terminal.


4. Output terminals (La, Lb, Lc, pin®, ®, ®)

This IC is designed for use 3 phase unipolar drive applications, but Bipolar drives also available with additional 3 transistors.

Care should be taken with back electron motive force generated by coil not to over the specified voltage.

Open collector type Pre-drive stage required current are calculated by following equation.

$$I(\ell a) = K_O \cdot \frac{I_O}{h_{fe}}$$

$$I (\ell a) = \frac{V_S - V_{BE} (PNP) - V_{SU}}{R}$$

$$K_{\mathbf{O}} \ge 2$$

h_{fe}: h_{fe} of PNP transistor IO: Output current

Summing that, V_{BE} (PNP) = 0.7V, V_{SU} = 0.2V

$$R = \frac{h_{fe} (V_S - 0.9)}{K_O \cdot I_O}$$

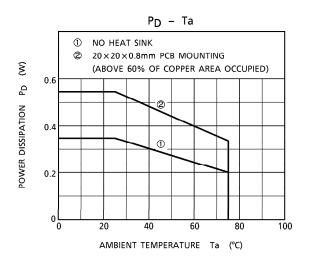
For Example, $V_S = 3V$, $h_{fe} = 100$, $I_O = 0.7A$, $K_O = 2$ $R = 150 \Omega$

FUNCTION

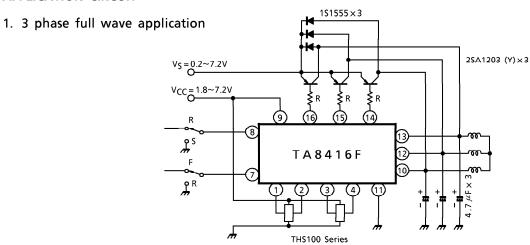
ROTATION CONTROL		POSITION SENSING INPUT			UPPER SIDE OUTPUT			LOWER SIDE OUTPUT			
F/R	R/S	На	Hb	Hc	ℓa	ℓb	ℓс	La	Lb	Lc	
н	н	Н	L	Н	1	0	0	0	1	0	
		Н	L	L	1	0	0	0	0	1	
		Н	Н	L	0	1	0	0	0	1	
		L	Н	L	0	1	0	1	0	0	
		L	Н	Н	0	0	1	1	0	0	
		L	L	Н	0	0	1	0	1	0	
	Н	Н	L	Н	0	1	0	1	0	0	
		Н	L	L	0	0	1	1	0	0	
ł ,		Н	Н	L	0	0	1	0	1	0	
L		L	Н	L	1	0	0	0	1	0	
		L	Н	Н	1	0	0	0	0	1	
		L	L	Н	0	1	0	0	0	1	
	L	Н	L	Н							
_		Н	L	L							
		Н	Н	L	High Impedance High Impedance				nco		
		L	Н	L	nigh impedance nigh impedanc			iiice			
		L	Н	Н							
		L	L	Н							

 $\begin{array}{lll} H \; : \; V_H{}^+ \! > \! V_H{}^- & 1 \; : \; ON \\ L \; : \; V_H{}^+ \! < \! V_H{}^- & 0 \; : \; OFF \end{array}$

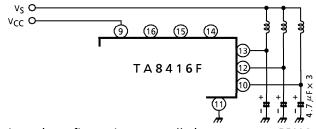
MAXIMUM RATINGS (Ta = 25° C)


CHARACTERISTIC	SYMBOL	RATING	UNIT	
Supply Voltage	Vcc	8	V	
Supply Voltage	٧s	8		
Output Current	lo	0.7	Α	
Output Current	١ _ℓ	20.0	mA	
Power Dissination	PD	350 (Note 1)	mW	
Power Dissipation	יט	550 (Note 2)	11100	
Operating Temperature	T _{opr}	- 30~80	°C	
Storage Temperature	T _{stg}	- 55∼150	°C	

(Note 1) No heat sink

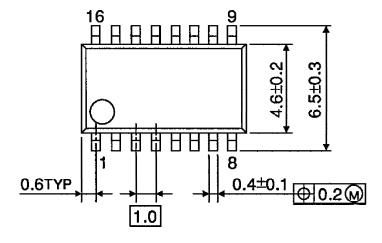

(Note 2) This rating is obtained by mounting on $20 \times 20 \times 0.8$ mm PCB that occupied above 60% of copper area.

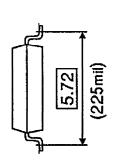
ELECTRICAL CHARACTERISTICS (Ta = 25°C)

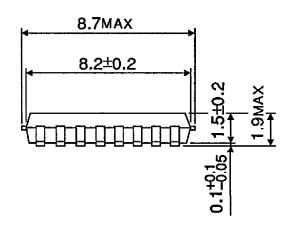

CHARACTERISTIC			SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
Supply Current			l _{CC1}	_	$V_{CC} = 3V$, output "OPEN"	_	2.7	4.0	mΑ	
			lCC3		$V_{CC} = 6V$, output "OPEN"	-	3.0	5.0	mA	
					Stand-by mode output "OPEN" $V_{CC} = 3V$	-	0	100	μΑ	
Saturation	La, Lb, Lc Side		V _{SL-1}	_	I _O = 0.1A	_	0.2	_	V	
Voltage			V _{SL-2}	_	I _O = 0.6A	_	0.6	1.0		
Voltage	ℓa, ℓb, ℓc Side		V _{SU}	_	I _ℓ = 10mA	_	0.1	0.2		
Position	Sensitivity		٧ _H	_	_	_	20	_	mV _{p-p}	
Sensing Input	Operating DC Level		CMR	_	_	0	_	V _C C – 1.2	V	
Diode Forward Voltage		VF	_	I _F = 0.7A	_	1.2	_	V		
Rotation	Operating Voltage	Forward	V _{FWD}	_	_	1.0	_	_	v	
Control Input		Reverse	V _{RVS}	_	_	_	_	0.4	1 ' 	
Voltage	Operating Current		l _{IN} (FR)	_	V _{F / R} = 3V	_	100	200	μ A	
Start / Stand-by	Operating Voltage	Run	V _{RUN}	_	_	1.0	_	_	v	
Control		Stand-by	V _{ST}	_	_	_	_	0.5		
Input Voltage	Operating Current		lin (RS)	_	V _F / R = 3V		100	200	μ A	
Saturation Voltage Differential (La, Lb, Lc Side)			ΔVς	_	I _O = 200mA, La, Lb, Lc	_	20	_	mV	
Leakage Current			IL	_	V = 8V	_	0	100	μΑ	
Thermal Shut-down Circuit Operating Temperature			T _{SD}	_	Junction temperature	140	_	_	°C	

APPLICATION CIRCUIT

- (Note) \bullet V_S and V_{CC} terminals connecting application also available.
 - We recommend to use TOSHIBA Ga-As type Hall Sensor THS100 series.
 - Output capacitans (4.7 μ F \times 3) are for noise suppression use. It is required to increase the value if the vibration noise is so loud.
- 2. 3 phase half wave application




- (Note) Other circuit and configurations are all the same to APPLICATION CIRCUIT 1.
 - Care should be taken with BEMF value generated by coils that not increase specified value of output transistor withstand voltage.
 - Utmost care is necessary in the design of the output line, V_S and GND line since IC may be destroyed due to short-circuit between outputs, air contamination fault, or fault by improper grounding.


Unit: mm

OUTLINE DRAWING

SSOP16-P-225-1.00A

Weight: 0.14g (Typ.)